Code quality and performance audit

This document explains how we handled code quality and how we measure the performance of the
ToDo List application.

Code quality

In order to maintain good quality code during the development of the application, we used the
following tools:

* PHP Code sniffer to respect coding standards
» PHP Stan to identify errors
* Sonar Cloud for the general code review

PHP Code sniffer

This tool permits to detect violations of a coding standard using the command phpcs or
automatically correct violations using the command phpcbf.

During the development of this application, we selected the PSR-12 standard (which implies PSR-1
and PSR-2 while extending the second) and we used the command phpcbf nameOfFolderHere --
standard=PSR12 -p to apply this standard to our code located in the src folder.

PHP Stan

This tool scans each file looking for errors without having to actually run the application.

For instance, it highlighted a badly written class name.

Sonar Cloud

We used Sonar Cloud for the code review. It highlights security vulnerabilities, bugs and code
smells.

Quality Gate

Reliability measures New code: last 30 days
0 e 7 Activity 0 e
& Bugs #% New Bugs

Security Measures

0@ 0 00 0

© Vulnerabilities @ Security Hotspots @ New Vulnerabilities @ New Security Hotspots

Maintainability measures

0@ 0 00 0

Debt & Code Smells New Debt & New Code Smells

Duplications Measures

O 0.0% 0 0.0%

Duplications on

Duplications Duplicated Blocks
40 New Lines

Conclusion

Thanks to these three tools, we were able to respect PSR 12 coding standard as well as avoiding
errors and security vulnerabilities.

Performance

We used BlackFire to study application performance. This tool can analyze memory consumption as
well as the duration of each function called by our application, allowing us to see where we can
make performance improvements.

o blackfire Dashboard 1]
00 p#/todoco.local/tasks
Delete a task p
ed 32 by Nicolas Renvolsé g
® A
200 GET http7/todoco.local/tasks
Toggle a task oy |y B
ted 33 minut Nicolas Renvolsé
200 GET http//todoco.local/tasks
Create a task %
Compare < fi
sated 34 minute: Nicolas Renvolsé
@ A 5
200 GET http7/todoco.local/tasks/create
Go to task creation page .
Created 35 minutes Nicolas Renvolsé il | 3 L
L__JONN 3
200 GET http//todoco.local/tasks
Show task list .
% Compare < i
eated 36 ago by Nicolas Renvolsé
L__JONN
200 GET httpy//todoco.local/
Login to homepage p—
ed 36 minutes ago by Nicolas Renvolsé >
[O
200 GET http//todoco.local/login
Login page R y

Nicolas Renvolsé

Our application being rather simple, it runs fast without any improvements. Still, we saw through
our BlackFire profiling that a lot of calls were executed to load classes. These calls could be avoided
if we generate cached files for the composer autoloader by executing the following command:
composer dump-autoload --optimize which convert PSR-0/4 autoloading to classmap to get a faster
autoloader.

o Comparison -0.794% +0.016% Deita ¥ @

%incl. Calls

Composer\Autoload\ClassLoader:findFile

mposer\Autoload\ClassLoader:loadClass +0 il
spl_autoload_call +0| H
run_init:public/index.php +0| @
App\Kernel:handle +0) o)
main() +0
P> mainQ)
mainQQ -20ms
@ 257s -255s
\
279MB—279MB o2
|
run_init:
public/index.php
toload\ClassLoader: findFileWithExtension -183| =21ms
omponent\HttpKernel\HttpKernel:handle +0
onent\HttpKernel\HttpKernel::handleRaw +0
tainerAwareEventDispatcher:doDispatch +0

ontainerAwareEventDispatcher:dispatch
ity\Http\Firewall\ContextListener:handle
istener\FirewallListener:onKernelRequest
tListener\FirewallListener:handieRequest
istener\FirewallListener::onKernelRequest

oser\Autoload\ClassLoader:loadClass@1

£ £ &£ £ £ % &
s 5 & 85 8 8 &

spl_autoload _call@1

	Code quality and performance audit
	Code quality
	PHP Code sniffer
	PHP Stan
	Sonar Cloud
	Conclusion

	Performance

